If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=32
We move all terms to the left:
7x^2-(32)=0
a = 7; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·7·(-32)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*7}=\frac{0-8\sqrt{14}}{14} =-\frac{8\sqrt{14}}{14} =-\frac{4\sqrt{14}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*7}=\frac{0+8\sqrt{14}}{14} =\frac{8\sqrt{14}}{14} =\frac{4\sqrt{14}}{7} $
| 4n+6=156 | | 21x-30=180 | | x3=-4 | | 10x+15=-45 | | 98=8-5n | | -30=0.83n | | 6=p-10 | | -30=0.83333n | | R=-10p2+200p+11000 | | -30=8.3333n | | 5x+(5x2)=27 | | 15+g=17 | | 2x-5(x-4)=-7+2x-13 | | 3(3x+1)-2=2(4x-2)+14 | | -30=5/6n | | -4=p/4 | | -13u–6u=19 | | d/3+5=d/4*7 | | 5+x/4=1/3(2-x/2)-2/3 | | 2x²-5x-3=9 | | 4n+6=182 | | X+y=-2×2×-y°14 | | (x+3)(x+4)=x^2+7x+12 | | 25+4x^2=9x^2 | | 3n+1=-17 | | 6x+18=x+95 | | 7=n/2 | | -15x-19=12 | | 6d−2/11=2d−2/13 | | 2(a+3)-3(a+4=-10 | | 4n+6=134 | | 40/9x=6/9 |